
BECCA: Reintegrating AI for Natural World Interaction

Brandon Rohrer
Intelligent Systems, Robotics, and Cybernetics Group

Sandia National Laboratories
Albuquerque, New Mexico

Abstract
Natural world interaction, the pursuit of arbitrary goals
in unstructured physical environments, is an excellent
motivating problem for the reintegration of artificial in-
telligence. It is the problem set that humans struggle
to solve. At a minimum it entails perception, learning,
planning, and control, and can also involve language
and social behavior. Although it may be impossible for
one agent to perform well in the entire problem space
of natural world interaction, an agent’s fitness is indi-
cated by being able to perform a wide variety of tasks.
In order to address the problem of natural world interac-
tion, a brain-emulating cognition and control architec-
ture (BECCA) was developed. It uses a combination of
feature creation and model-based reinforcement learn-
ing to capture structure in the environment in order to
maximize reward. BECCA avoids making common as-
sumptions about its world, such as stationarity, deter-
minism, and the Markov assumption. BECCA has been
demonstrated performing a set of tasks which is non-
trivially broad, including a vision-based robotics task.
Current development activity is focused on applying
BECCA to the problem of general Search and Retrieve,
a representative natural world interaction task.

Introduction
Unstructured robotics tasks are well suited to be challenge
problems for big AI. Experience suggests that narrow prob-
lems are best solved by carefully engineered point solu-
tions. However, these solutions tend not to be intelligent
in the sense that they can’t solve problems for which they
weren’t explicitly designed. There is widespread interest in
more intelligent methods, but investigators’ aesthetic plea-
sure in generality rarely overcomes the practical gains af-
forded by specificity. Quantitative performance improve-
ments on a problem typically drive publication decisions,
and hence research efforts, more strongly than statements
about an algorithm’s breadth. One way to encourage the de-
velopment of intelligent methods is to focus on solving prob-
lems that require them by definition. An unstructured task is
one about which few details are known beforehand. In or-
der to solve it, an agent must in theory be capable of solv-
ing every task with which it might be presented. Focusing

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on physically embodied agents in robotics tasks also drives
the integration of perception, learning, planning, and con-
trol. An appropriate challenge task transforms the abstract
engineering virtues of integration and generality into con-
crete development requirements.

Natural World Interaction (NWI) is the set of all tasks
in which a goal is pursued in a physical environment. It en-
compasses all the goal-pursuit tasks humans perform. Goals
may be abstract and a function of time. Achieving them may
involve speech, social interaction, game playing, and rea-
soning. Measuring performance on the entire set of NWI
task space would be infeasible, but the task space can be
sampled to obtain an estimate. Agents’ performance can be
compared against each other on a randomly selected set of
tasks. An agent with mediocre performance on many tasks
would be superior to an agent that had optimal performance
on one task but very poor performance on all others. Physi-
cal interaction tasks performed by machines implies robotic
embodiments of the software agents. Thus, NWI is a set of
unstructured robotics tasks, and serves as a bold challenge
problem for the integration of AI.

A brain-emulating cognition and control architecture
(BECCA) is being developed in an attempt to address NWI.
BECCA is designed with few assumptions built in, in order
to maximize its applicability to as many tasks as possible.
It is modeled after hypothesized function of human and an-
imal information processing, since biological solutions are
currently the state of the art in NWI.

There is a small but vital body of research in robots per-
forming unstructured goal pursuit. (Beeson, Modayil, and
Kuipers 2010; Konidaris et al. 2011; Sutton et al. 2011, for
example) (Note that “unstructured” does not imply that there
is no structure inherent in the task, but rather than the agent–
and the agent’s creator–is not privy to that structure before-
hand.) The limited scope of the tasks performed in these ef-
forts highlight the challenges involved, but their successes
justify the research direction and give hope for large steps
forward in the near term.

NWI lends itself to formulation as a reinforcement learn-
ing (RL) problem in the broad sense (Sutton and Barto
1998), that is, any solution to NWI accepts observations
and produces actions to maximize a scalar reward signal,
but may not rely on common RL techniques. BECCA is an
RL agent in this broad sense. It couples a feature creator

and a model-based reinforcement learner to achieve general
goal pursuit behaviors. The feature creator identifies patterns
in the input, allowing for a concise representation of obser-
vations. The stream of features passed to the reinforcement
learner are its experiences. It uses them to create a model,
which it then uses to make predictions and plan. It also learns
which features tend to be associated with reward and directs
its planning accordingly.

Method
A block diagram shows how BECCA’s functional compo-
nents interact. (See Figure 1.) BECCA issues action com-
mands to the world and receives from the world a reward
signal and observations, in the form of sensory input and ba-
sic features. Specifically, at each discrete time step, BECCA
interfaces with the world in the following way:

• It reads in a sensory observation, a vector o ∈ Rk|0 ≤
oi ≤ 1.

• It reads in a basic feature observation, a vector b ∈
Rm|0 ≤ bi ≤ 1.

• It receives a reward, a scalar r ∈ R| − 1 ≤ r ≤ 1.

• It outputs an action, a vector a ∈ Rn|0 ≤ ai ≤ 1.

The three main functional entities of the agent system are
the feature creator and the reinforcement learner, elements
of BECCA, and the world, representing everything else.

Feature creator
The role of the feature creator is to twofold: 1) create a fea-
ture space into which inputs can be mapped and 2) map the
input into that feature space at each time step. As shown in
Figure 1, sensory inputs are formed into groups based on
how often they are co-active, and patterns within each group
are identified as features and added to its feature set.

Feature creation, as BECCA does it, is finding linear com-
binations of inputs that reflect the underlying structure of the
world. This is distinct from feature selection, which is iden-
tifying a subset of inputs as being most significant and dis-
regarding the rest. BECCA’s feature creation may be con-
sidered a dimensionality reduction method, but not strictly
so, since the number of features created may outnumber the
original inputs.

Grouping Grouping is based on a modified correlation of
input elements. The pseudo-correlation takes into account
the fact that the co-activity of two input elements is mean-
ingful, but co-inactivity is not. It also introduces asymmetry.
If input A is active every time B is active, then B may be
considered highly related to A, but if B is only active ten
percent of the time that A is active, then A would be only
weakly related to B.

The correlation is incrementally estimated at each time
step. Once the average correlation between two elements ex-
ceeds a threshold, the two elements form the nucleus of a
group. Additional elements are added to the group one at a
time while the average correlation between the closest can-
didate element and the rest of the group exceeds a threshold.

In this way, groups of correlated elements are formed auto-
matically. Elements may become members of more than one
group, but the level of correlation required increases with
each additional group it joins.

The vector of input elements, o, constitutes a k-
dimensional space, Rk. A group with p member elements
constitutes a p-dimensional subspace of the input space, Rp.
Due to the constraints on the input elements (0 ≤ oi ≤ 1),
all combinations of observed group inputs fall within one
quadrant of the space.

Feature creation A feature is represented by a unit vec-
tor in the group subspace. At each time step, the distance
(in the sense of vector angle) between the group input and
the nearest feature is calculated. If the distance exceeds a
threshold, a unit vector in the direction of the group input is
added to the feature set of that group. This process results in
an approximate tiling of the group subspace, but only in the
region of the subspace where observations occur. It avoids
creating unnecessary features. There is currently no mecha-
nism for forgetting features that are rarely observed, but such
a mechanism may be introduced in future versions.

Creating features on subsets of the input results in fea-
tures that are localized. This is in contrast to feature creation
methods, such as principal components analysis (PCA), that
create features spanning the entire input space.

Mapping input to features In addition to the feature
learning described above, mapping the input onto features
occurs at each time step as well. Input elements are bro-
ken into their respective groups and are projected onto the
features of that group. The magnitude of each projection
acts as a vote, and the feature with the strongest vote sup-
presses the others through a winner-take-all operation. The
output of each group at each time step is a feature vector of
f ∈ Rq|0 ≤ fi ≤ 1, where q is the number of features in
the group, and all fi = 0 except for the winning feature. The
feature outputs of all groups are then combined into a master
feature stimulation vector, g ∈ Rs|0 ≤ gi ≤ 1, where s is
the total number of features across all groups.

Mapping input onto the feature set, is illustrated in Fig-
ure 2. Progressing from the bottom of the figure to the top:
sensors respond the the environment, then they activate low
level features, which in turn activate progressively higher
level features. The set of all active features are passed to the
reinforcement learner at each time step. These constitute the
agent’s interpretation of its environment and its current state
within it. The features in the figure are displayed according
to the layout of the sensors, but this is only for the conve-
nience of the human reader. BECCA has no notion of how
the sensors or features relate to each other in the world. The
illustration shows visual data only, but this is also for conve-
nience. BECCA handles information from all sensor types
the same way and build features of any type, even combin-
ing multiple sensor types in a single feature if the agent’s
observations justify doing so.

Basic features In some tasks, the designer may wish to
engineer some basic features that incorporate knowledge of
the world, rather than forcing BECCA to learn them all. For

BECCA agentg

fe
a

tu
re

se
t

se
p

a
ra

ti
o

n

in
to

 g
ro

u
p

s

g
ro

u
p

in
p

u
ts

feature creator

feature activity

reinforcement learner

sa
lie

n
ce

w
o

rk
in

g

m
e

m
o

ry

u
p

d
a

te

m
o

d
e

l

d
e

lib
e

ra
ti

ve

a
ct

io
n

se
le

ct
io

n

re
a

ct
iv

e

a
ct

io
n

se
le

ct
io

n

a
tt

e
n

d
e

d

fe
a

tu
re

w
o

rk
in

g

m
e

m
o

ry

a
ct

io
n

s

p
re

d
ic

te
d

fe
a

tu
re

s

fe
a

tu
re

st

im
u

la
ti

o
n

fe
a

tu
re

a
ct

iv
it

y

u
p

d
a

te

Σ

d
e

lib
e

ra
te

a
ct

io
n

s
re

a
ct

io
n

s

a
ct

io
n

s

world

a
ct

u
a

to
rs

p
re

p
ro

ce
ss

in
g

e
m

b
o

d
im

e
n

t

preprocessing

sensors

re
w

a
rd

ca
lc

u
la

to
r

e
n

v
ir

o
n

m
e

n
t

reward
sensory input

basic features

Figure 1: At each time step, the BECCA agent completes one iteration of the sensing-learning-planning-acting loop, consisting
of nine major steps: 1) Reading in observations and reward. 2) Updating its feature set. 3) Expressing observations in terms
of features. 4) Attending to the most salient feature. 5) Updating its model. 6) Predicting likely outcomes based on an internal
model. 7) Selecting a deliberative action based on the expected reward of likely outcomes. 8) Generating reactive actions. 9)
Combining deliberative and reactive actions and sending the resulting commands out to the world.

...

...

...

...

se
n

so
r

o
u

tp
u

ts

le
v

e
l 1

fe
a

tu
re

s

le
v

e
l 2

fe
a

tu
re

s

le
v

e
l 3

fe
a

tu
re

s

h
ig

h
e

r
le

v
e

l

fe
a

tu
re

s

o
ri

g
in

a
l

st
im

u
lu

s

Figure 2: A conceptual illustration, using visual data, of
the feature creator mapping input to previously created fea-
tures. In this example, individual sensors are single pixels.
BECCA had previously formed groups and identified fea-
tures within those groups. The features most strongly ex-
cited by the inputs become active and excite higher level
features. First level features resemble oriented line segments
and points. Higher level features resemble curves, contours,
and complete objects. Arrows show which features con-
tribute most strongly to the activation of their higher level
counterpart.

instance, finding blobs in vision data using a canned prepro-
cessing step provides information to BECCA that may be
useful even before it is combined with other inputs. These
basic features are concatenated to the feature stimulation
vector as shown in Figure 1.

One of the most significant aspects of BECCA’s feature
creator is that it allows for the creation of hierarchical fea-
ture sets, that is, features can be built into higher level fea-
tures. Elements of the feature stimulation vector conform
to the same constraints as sensory inputs and so can be fed
back and treated as such. This loop lets features be treated
as any other input, grouped, and built into higher level fea-
tures. There is no inherent constraint on the complexity of
the features that can be constructed in this way. It is driven
only by structure inherent in the observations.

BECCA’s feature creator is incremental, meaning that it
incorporates new observations one at a time rather than in
batches, and it is on-line, meaning that each observation
is incorporated before the next one is received. These at-
tributes are uncommon in feature creation algorithms and
suit BECCA well to interacting with the natural world
through a robotic embodiment.

Reinforcement learner
The role of the reinforcement learner is to maximize the
amount of reward BECCA collects. It does this by taking in
feature stimulation information, using that to form a model
of the world, and using that model to select actions that are
likely to result in a high payoff.

Feature processing and attention As the feature stimu-
lation vector is passed in at each time step, it is combined
with decayed versions of recent feature stimulation values
by means of leaky integration to form a feature activity vec-
tor. This has the effect of giving a stimulated feature some
temporal persistence across several time steps. A salience
filter selects only one feature to attend. A working memory

filter maintains a brief history of attended features, also us-
ing leaky integration. By this mechanism, attended features
are also given a small amount of temporal persistence.

Model creation At the core of the reinforcement learner
is the world model it creates. The model consists of a list of
feature-space transitions in the form of cause - effect pairs,
each with an associated count and reward value. At each
time step, the previous working memory is compared to the
list of causes and the attended feature is compared to the list
of effects. If a similar pair exists within the model, its count
is incremented, and its reward value is adjusted toward the
current reward. If there isn’t a sufficiently similar pair, the
previous working memory and attended feature are added as
a new cause-effect pair.

The model that results is similar to a first-order Markov
model, but with important differences. At any point, the tab-
ular entries in BECCA’s model can be combined and, under
a frequentist assumption, transition probabilities between
causes and effects can be estimated, similar to a Markov
model. However, the transition probabilities are not of tran-
sitions from state to state, but from leakily-integrated state
(working memory) to state (attended feature). As a result,
BECCA’s model resembles a degenerate form of a higher-
order Markov model more than a first-order model. It incor-
porates a small amount of history into each cause, allowing it
to capture dynamics and complexities of structure that could
not be represented in a first-order Markov model without
explicitly creating additional state variables for that purpose.
Also, since the basis for constructing causes and effects is an
impoverished state representation (attended features only),
the cause-effect transitions take on a different significance
than full state transitions.

As BECCA is exposed to a variety of inputs and chooses
actions over more time steps, the model accumulates more
cause-effect transition pairs. The count associated with each
transition establishes its frequency of observation, and the
reward value represents the expected reward associated with
making that transition. Each transition represents a one-step
path segment through feature space. (Actually, since the at-
tention process effectively ignores so many of the active fea-
tures, a transition is a path segment through a subspace of the
whole feature space. Alternatively, it can be considered as a
region of a hyperplane in the full feature space.) Once the
number and density of the path segments grow sufficiently
high, it becomes possible for BECCA to make multi-step
plans by linking several segments together to get from a cur-
rent state to a desired state.

Prediction The most important capability required for
planning is prediction. BECCA is designed to operate in em-
bodiments and environments that are stochastic. The abil-
ity to predict the likely outcomes of various actions allow
BECCA to choose the action with the best expected out-
come. In this way, prediction, planning, and control are all
part of the same process.

Prediction occurs by matching the current state (either
the working memory or the feature activity in its entirety)
against all the causes in the model. The strength of the
matches and the count of each transition affect the weight

Figure 3: A conceptual illustration, using Cartesian position
features, of the reinforcement learner using its model to plan
a path to a rewarded state. In this example, the agent has al-
ready constructed a model of its world through exploration.
Each line segment represents a cause(•)–effect(◦) transition.
The bold lines show the path through the feature space cho-
sen to reach a reward.

with which each effect is predicted.

Action selection In a typical embodied system, many ef-
fects will be conditional on the actions selected by the
agent. In BECCA, action selection relies on predicted ef-
fects. Each cause-effect transition has a reward associated
with it, learned by experience. The transitions with both high
expected reward and high similarity to the current state are
inspected to see whether they involve an agent action, and
if they do, that action is executed. There are two types of
action selection, reactive and deliberative. In reactive ac-
tion selection, the entire feature activity vector is used to
seed predictions from the model and actions are executed
with a magnitude proportional to the quality of match with
each transition. In deliberative action selection, the working
memory only is used to seed predictions from the model and
actions from a single transition, chosen both for its similarity
to the current state and for its expected reward, are executed
with a magnitude of one. Both types of action selection take
place at each time step and the actions resulting from both
are summed nonlinearly such that no actions are executed
with a magnitude greater than one. The deliberative action
is also fed back to the working memory so that it can be ap-
propriately recorded as part of the cause when the model is
trained on the following time step.

World
The world can be subdivided into two parts, the portion
that is engineered, including the physical embodiment of the
agent and the reward calculator, and the portion that is natu-
rally occurring and presumably not under the direct control
of the system designer (labeled environment in Figure 1). It
is assumed that both parts are unknown to BECCA at the
time of its creation.

Preprocessing The actions issued from BECCA and the
inputs it receives are all constrained to be real valued be-
tween zero and one. In most cases, some processing is re-
quired to translate actual sensor readings to this range. For
instance, pixel brightness values given as 8-bit unsigned in-
tegers may be divided by 256. Or action values may be mul-
tiplied and rounded in order to produce an integer motor step
value between 0 and 1023. In other cases, more significant
processing may need to be done. A continuous position sen-
sor value might be broken into bins, with each bin repre-
sented as a separate input channel to BECCA. This would
likely be used as a basic feature input to BECCA, as dis-
cussed above. Other more extreme basic feature processing
might include specialized blob detection or facial recogni-
tion algorithms, speech-to-text processors, occupancy grid
creators, or sensor fusion methods. Higher level preprocess-
ing for actions could include the incorporation of coordi-
nated multi-actuator motions, fixed motion primitives, set
points for high-bandwidth low-level controllers, and even
heuristic goal pursuit subroutines. Where domain knowl-
edge can be applied to accelerate BECCA’s learning, the
preprocessing of the sensor and action information in the
embodiment is the place to implement it. This allows the
BECCA agent to remain unchanged between many differ-
ent implementations, yet still allows its behavior to be cus-
tomized where required.

Embodiment The physical embodiment includes the ac-
tuators and sensors of the hardware, as well as the mecha-
nisms and physics that couple them. It is the physical man-
ifestation of the agent. In practice, the embodiment can be
simulated, with virtual sensors and actuators. In fact, once
in simulation, the embodiment need not resemble a physi-
cal system at all. Virtual actuators may buy and sell stocks
or send emails, and virtual sensors may report any relevant
type of information. However, the focus of the research ef-
fort described here has been on robots behaving in a physical
environment.

Environment The environment is everything else in the
universe that is not BECCA or its embodiment. It may
include elements that are abruptly non-linear, deformable,
time-varying, and stochastic. It can include other robots,
other BECCA agents, and other humans. In short, it can in-
clude anything that humans encounter as they interact with
the world. Although few, if any, rigorous statements can be
made about any agent’s performance in such a broad setting,
BECCA at least avoids making explicit assumptions about
the environment that automatically limit its performance in
the general case, such as time invariance.

Reward calculator Together with the embodiment and
the environment, a reward function completes the definition
of a reinforcement learning task. The reward calculator may
have access to all of the sensors and the preprocessed in-
put information. Using this information, it produces a real
valued reward between -1 and 1. BECCA also avoids mak-
ing assumptions about the reward function. It may be a time
varying and stochastic function of any combination of sen-
sor observations. In one type of implementation, it may be

directly controlled by a human trainer. The trainer, from
BECCA’s standpoint, would be just one element of the en-
vironment, and the reward function would be a simple func-
tion of the sensed environmental state, however difficult to
predict.

Development cycle
Given the limitations of current AI and robotics approaches,
NWI is too large in scope to be useful as a near-term goal.
It is helpful to select a subset of NWI tasks as a develop-
ment target and expand that subset as capabilities improve.
However, in this process it is critical to keep in mind the
ultimate goal and avoid engineering task-specific solutions
that fail to generalize to new tasks. BECCA’s development
cycle was designed to emphasize breadth in NWI and avoid
overfitting performance to specific tasks. BECCA’s success
as an agent is measured by the number of tasks on which
it achieves adequate performance, rather than the extent to
which it achieves optimal performance on a single task.

As a first pass to narrowing down the NWI task, a chal-
lenge task was chosen: Search and Retrieve. (Rohrer 2010)
In the search and retrieve task (S&R), an embodied agent
is instructed to enter an environment and retrieve an object.
It receives a reward when it returns with the desired object.
The instruction may be of any type, including verbal, tex-
tual, visual, and/or gestural. There are no constraints on the
nature of the environment, the object, or the embodiment.
S&R is sufficiently general to capture much of the breadth in
NWI, but specific enough to help focus laboratory research
efforts.

In order to grow an S&R-relevant task set that is simple
enough to be feasible yet complex enough to be interesting,
a scaffolded approach to task selection has been taken. First,
a trivially easy reinforcement learning problem is selected.
Then the following method is applied iteratively:

1. Informed by experimental psychology and cognitive neu-
roscience, refine BECCA’s algorithms until it performs
adequately on the most recently selected task. ‘Adequate’
is subjective, falling somewhere between ‘at chance’ and
‘optimal’.

2. Test BECCA on all previously selected tasks. If perfor-
mance is no longer adequate on any one of them, select it
and return to step 1.

3. Select a new task to add to the set. It should be relevant
to the S&R task and be slightly more challenging than the
previous task.

4. Return to step 1.

Results
So far a small, but nontrivial, set of tasks has been added
to BECCA’s repertoire using this methodology. MATLAB
code for most of these tasks can be downloaded (Rohrer
2011a), and the papers cited provide technical details of the
tasks and results.

• One dimensional grid world. As a trivial first task,
BECCA was rewarded for maintaining one state in a

simulated one-dimensional grid world with nine discrete
states. It achieved optimal performance. In a more chal-
lenging variant, BECCA was limited to single-state steps,
requiring multi-step planning.

• Two dimensional grid world BECCA was rewarded for
spending time in one element of a 5×5 grid, and punished
for spending time in another. In one variant, there was one
sensor per grid element. In a second variant, there was one
sensor per row and one per column.

• One dimensional visual servoing BECCA was allowed
to saccade in one dimension across a constructed image. It
was rewarded for fixating on one position. This task oper-
ated on pixellated visual input and required first creating
features before the model could be populated. BECCA’s
performance approached optimal. (Rohrer 2011d)

• Two dimensional visual servoing Similar to the previous
task, but in two dimensions. (Rohrer 2011c)

• Visual feature creation Although not a proper reinforce-
ment learning task, this task focused on feature creation
from natural images. (Rohrer 2011b) Hierarchical feature
sets were created from pixellated, center-surround image
patches from the Caltech-256 data set. (Griffin, Holub,
and Perona 2007)

• Auditory feature creation This task was similar to visual
feature creation, but with binned fast Fourier transforms
of audio data taken from National Public Radio broad-
casts. (Rohrer 2011b)

• Mobile robot visual search In an older form of BECCA,
a mobile robot (SRV-1, Surveyor Corp.) navigated a lab-
oratory environment, being rewarded alternately for find-
ing low and high contrast visual scenes. (Rohrer 2009a)
This behavior was described qualitatively as “hiding”
and “seeking”. A video documents the behavior. (Rohrer
2009b)

• CoroBot robot arm positioning Most recently, BECCA
has been demonstrated in two additional physical robot
embodiments, a Whole Arm Manipulator (WAM, Bar-
rett Technology, Inc.) and a CoroBot (CoroWare Tech-
nologies, Inc.). Several tasks were implemented on these
platforms. A robotic version of the one-dimensional grid
world was implemented on the CoroBot. The arm moved
between a small number of discrete positions and was re-
warded for one of them. (Demonstrated at AGI 2011)

• CoroBot hand-eye coordination In a second CoroBot
task involving vision, the robot was rewarded for occlud-
ing its field of vision with its own hand. This represented a
primitive first step toward visuo-motor coordination. The
CoroBot learned to perform both of these tasks optimally
in the ϵ-greedy sense. (Demonstrated at AGI 2011)

• WAM robot arm positioning with transfer from simu-
lation The WAM performed a 50-state, three-dimensional
version of the grid world task. Due to the larger scope of
the task, the bulk of the learning was done in simulation,
then transferred to the hardware task. (Submitted for pub-
lication)

• Human training of the WAM In a second task, the
WAM moved between a small number of states, while a
human trainer provided reward and punishment to shape
its behavior. After a brief period of experimentation, the
WAM settled into the rewarded state. (Submitted for pub-
lication)

Discussion
BECCA still falls far short of its intended purpose, to be-
come a general reinforcement learning agent capable of ad-
dressing Natural World Interaction. It has, however, made
first steps in this direction and, more importantly, it lacks
any built-in limitations that automatically preclude its ability
to achieve that goal. BECCA’s development path provides
a roadmap along which progress can be measured. Future
work will focus on expanding the set of tasks BECCA can
address, working toward high levels of performance on the
search and retrieve task.

Acknowledgments
The robot tasks were developed and supported by Pate Brog-
ger, Sean Hendrix, and Dr. J. Dan Morrow of Sandia and by
Nicholas Malone, Prof. Ron Lumia, Prof. Lydia Tapia, and
Prof. John Wood of the University of New Mexico. Fredrick
Rothganger and Patrick G. Xavier contributed to in depth
discussions of various learning approaches during BECCA’s
development. This work was supported by the Laboratory
Directed Research and Development program at Sandia Na-
tional Laboratories. Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

References
Beeson, P.; Modayil, J.; and Kuipers, B. 2010. Factoring
the mapping problem: Mobile robot map-building in the hy-
brid spatial semantic hierarchy. The International Journal
of Robotics Research 29(4):428–459.
Griffin, G.; Holub, A.; and Perona, P. 2007.
Caltech-256 object category dataset. Technical
Report 7694, California Institute of Technology.
http://authors.library.caltech.edu/7694.
Konidaris, G.; Kuindersma, S.; Grupen, R.; and Barto, A.
2011. Autonomous skill acquisition on a mobile manipula-
tor. In Proceedings of the Twenty-Fifth Conference on Arti-
ficial Intelligence, 1468–1473.
Rohrer, B. 2009a. Model-free learning and control in a
mobile robot. In Proceedings of the Fifth International Con-
ference on Natural Computation.
Rohrer, B. 2009b. Robot learning
with a biologically-inspired brain (becca).
http://www.youtube.com/watch?v=mJ8LMMHsUf8.
Rohrer, B. 2010. Accelerating progress in artificial general
intelligence: Choosing a benchmark for natural world inter-
action. Journal of Artificial General Intelligence 2:1:28.

Rohrer, B. 2011a. BECCA code page.
http://www.sandia.gov/rohrer/code.html.
Rohrer, B. 2011b. Biologically inspired feature creation for
multi-sensory perception. In Second International Confer-
ence on Biologicall Inspired Cognitive Architectures.
Rohrer, B. 2011c. A developmental agent for learning fea-
tures, environment models, and general tasks. In First Joint
International Conference on Development and Learning and
Epigenetic Robotics.
Rohrer, B. 2011d. An implemented architecture for feature
creation and general reinforcement learning. In Workshop
on Self-Programming, 4th International Conference on Ar-
tificial General Intelligence.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement
Learning: An Introduction. Cambridge, Massachusetts: MIT
Press.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; White, A.; and Precup, D. 2011. Horde: A scalable
real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the 10th
International Conference on Autonomous Agents and Multi-
agent Systems.

